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Impurity scattering in d-wave superconductivity. Unitarity limit
versus Born limit
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Abstract. As is well known, Zn-substitution of Cu in the Cu-O2 plane in the hole-doped high Tc cuprates
provides a semi-quantitative test of underlying d-wave superconductivity. Here we complement this with
a parallel study of Ni-substitution, which gives rise to weak scattering described with the Born approxi-
mation.

PACS. 74.72.-h High-Tc compounds – 74.25.Bt Thermodynamic properties – 74.25.Fy Transport
properties (electric and thermal conductivity, thermoelectric effect, etc.)

It is well established that superconductivity in hole-
doped high Tc cuprates is d-wave [1,2] with the puzzling
exception that in electron doped cuprates it is s-wave
[3,4]. Here we shall not enumerate the different experi-
ments leading to this general consensus though they can
usually be classified into 3 groups: 1) detecting the pres-
ence of nodes (or lines of zeros) in the order parameter,
2) phase sensitive experiments, which detect the sign
change in ∆(k) by going around from k‖a to k‖b and
3) showing that ∆(k + Q) ∼= −∆(k) where Q = (π, π).
In this perspective impurity scattering provides the fourth
test. In particular, a small amount of Zn-substitution gives
rise to dramatic effects [5]: 1) a rapid suppression of the
superconducting transition temperature Tc, 2) a dramatic
increase of the residual density of states N(0), and 3) a
rapid decrease in the superfluid density. These suggest
that the scattering due to Zn-impurities can be considered
as being in the unitarity limit [5]. Such an analysis within
a weak-coupling theory has been confirmed experimen-
tally semi-quantitatively from the Knight shift in NMR
[6], low temperature T -linear term in the specific heat [7],
and the superfluid density, determined from muon spin
rotation [8]. Also the superfluid density of Pr-substituted
YBCO [9] appears to be well described within the same
model. Here we shall study a parallel analysis of the effect
of impurity scattering in the Born limit. This model may
apply to Ni-substituted hole-doped high Tc cuprates. Of
course similar work has been done previously. In [10] the
superfluid density has been obtained both in the unitarity
limit and in the Born limit, though we include this for
completeness. Also some aspects of the density of states
are discussed in [11], though they did not calculate the
density of states for the variety of impurity concentration
shown in Figure 6. On the other hand, the facts that the
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simple relation between the spin susceptibility and the
superfluid density ρs(T ) (χs(T )/χN = 1− ρs(T )) will be
broken in the presence of impurities, and that another
simple relation exists at T = 0 K, χs(0)/χN = N(0)/N0,
where N(0) is the electronic density of states at E = 0,
are established in [5]. We will exploit these relations to
calculate the corresponding quantities in the Born limit
as well. Also, to our knowledge, the jump in the specific
heat in the Born limit has not been discussed previously.
A wealth of experimental data of the superfluid density
and the optical conductivity from YBCO in the presence
of impurities have been reported in [12]. Although a the-
oretical analysis on this subject has already appeared in
the literature [13], the impurity effect on the microwave
conductivity has not been studied systematically. Unfor-
tunately this is beyond the scope of the present paper,
since we consider mostly the thermodynamic properties
of d-wave superconductors in the presence of impurities.

In the presence of the impurity scattering in the Born
limit the renormalized Matsubara frequency ω̃ is given by
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where f = cos 2φ, x̃ = ω̃/∆, K(z) is the complete elliptic
integral and 〈· · · 〉 means the average over φ. In the weak-
coupling model [14] the gap equation is given by
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where λ is the dimensionless coupling constant and
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means that the ω sum is cut off at ωn = Ec. In the limit
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∆→ 0 equation (2) gives
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where Tc (Tc0) is the superconducting transition temper-
ature in the presence (absence) of impurity and ψ is the
di-gamma function. Equation (3) is the same as the well-
known Abrikosov-Gor’kov formula for an s-wave supercon-
ductor with magnetic impurities [15,16], though here Γ is
the scattering rate due to the nonmagnetic impurities. In-
deed, this similarity generated a lot of confusion in the
early days of high Tc cuprates [17]. We note that Tc = 0
for Γ = Γc = 0.8819Tc0. On the other hand at T = 0 K
equation (2) is rewritten as
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where ∆(0, Γ ) (∆00) is the order parameter at T = 0
K in the presence (absence) of impurities and K =

K(1/
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Also the residual density of states (i.e. the quasi-particle
density of states at E = 0) is given by
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where N0 is the density of states in the normal state. In
Figure 1 we show Tc/Tc0, ∆(0, Γ )/∆00, and N(0)/N0 as
functions of Γ/Γc. Compared with those in the unitarity
limit [5], although the Tc behavior is the same, ∆(0, Γ ) de-
creases much more slowly with Γ , and N(0)/N0 is almost
zero until Γ/Γc ≥ 0.4. Therefore N(0)/N0, as measured
by the Knight shift in NMR [6] or by the T -linear term
in the specific heat [7], can clearly discriminate the two
limiting behaviors of impurities.

Another quantity of interest is the superfluid density
ρs(T, Γ ), which is given by

ρs(T, Γ ) = 2πT
∑
n
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At T = 0 K, this reduces to
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where the argument of K and E is the same as in equa-
tion (4). We note that in the Born limit ρs(0, Γ ) ≤
ρs,spin(0, Γ ) = 1 − N(0)/N0, while in the unitarity limit
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Fig. 1. The Born limit: ∆(0, Γ )/∆00 (· · · · · · ), Tc/Tc0 (———)
and the residual density of states N(0)/N0 (– · – · –) are shown
as functions of Γ/Γc , where Γc = 0.4122∆00 .

0 0.2 0.4 0.6 0.8 1
N

��������
N0

0

0.2

0.4

0.6

0.8

1

Tc����������
Tc0

Fig. 2. The normalized transition temperature Tc/Tc0 is shown
as a function of the residual density of states N(0)/N0 for the
Born limit (———) and the unitarity limit (· · · · · · ).

ρs(0, Γ ) > ρs,spin(0, Γ ). In Figures 2-5 we show: Tc/Tc0
versus N(0)/N0 for the Born limit and the unitarity
limit (Fig. 2), Tc/Tc0 versus ∆(0, Γ )/∆00 for both lim-
its (Fig. 3), Tc/Tc0 versus ρs(0, Γ ) for both limits (Fig. 4)
and ∆C/∆C0 versus Tc/Tc0 for both limits (Fig. 5), where
∆C is the jump in the specific heat at T = Tc. By ex-
panding the gap equation in powers of ∆ and keeping up
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Fig. 3. Tc/Tc0 is shown as a function of the normalized order
parameter ∆(0, Γ )/∆00 at T = 0 K for the Born limit (———)
and the unitarity limit (· · · · · · ).
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Fig. 4. Tc/Tc0 is shown as a function of the superfluid density
ρs(0, Γ ) for the Born limit (———) and the unitarity limit
(· · · · · · ).

to the term of ∆2, we obtain
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where ρ = Γ/2πTc, ζ(z) is the Riemann zeta-function,
ψ(1)(z), ψ(2)(z) and ψ(3)(z) are the poly-gamma functions
and the ± sign corresponds to the unitarity limit and the
Born limit respectively. In Figure 4, ρs(0, Γ ) in the unitar-
ity limit corrects an erroneous curve published in recent
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Fig. 5. The normalized jump in the specific heat at T = Tc,
∆C/∆C0 is shown as a function of Tc/Tc0 for the Born limit
(———) and the unitarity limit (· · · · · · ).
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Fig. 6. The density of states in the Born limit for Γ/∆ = 0
(———), 0.01 (· · · · · · ), 0.05 (- - - - -), 0.1 (– · – · –), and 0.2
(— — —) is shown as a function of E/∆.

papers [17]. In general, for the same reduction of Tc the
impurity in the unitarity limit affects the superconductiv-
ity much more strongly.

In Figure 6 we show the quasi-particle density of states

N(E)
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for different Γ/∆ as functions of E/∆. Here ω̃ is de-
termined from equation (1), but ω = −iE. The curves
are quite different from those in the unitarity limit [18].
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In particular, the absence of the conspicuous peak (at
E = 0) should be a clear sign of the Born limit.

Very recently the tunneling density of states is ob-
served in partially Zn-substituted Bi2212 and the Ni-
substituted one [19]. In the Zn-substituted Bi2212 the zero
bias density of states increases very rapidly, whereas noth-
ing happens to N(0) in the Ni-substituted Bi2212, which
is consistent with the present analysis. On the other hand
it appears that the order parameter ∆ increases in the
Ni-substituted Bi2212, which is not described within the
present model.

We can discuss the thermal conductivity in the Born
limit as well. At low temperature (say, T < 0.1Tc), the
thermal conductivity of monocrystals is mostly electronic
and proportional to T , the temperature [5,20]
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In the Born limit, since C0 is very small and the
Γ -dependence of ∆(0, Γ ) is small, the impurity will pro-
vide a beautiful test case of Lee’s universality [21]. Also,
as in the case of the unitarity limit, the Wiedemann-Franz
law is obeyed between the real part of the electric conduc-
tivity and the thermal conductivity.

In summary, we have studied a few physical proper-
ties of d-wave superconductivity in the presence of impu-
rities in the Born limit. Though the effect of impurities on
the superconducting transition temperature is the same as
in the unitarity limit, there are many different features.
Experimental studies of these features in Ni-substituted
hole-doped cuprates will provide another test of d-wave
superconductivity.

The present work is supported by NSF under grant number
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